CHAPTER

Equations and Inequalities

Lesson 8.1 Solving Algebraic Equations

Evaluate each expression for the given value of the variable.

1.
$$x + 4$$
 when $x = 3$

2.
$$y - 6$$
 when $y = 10$

3.
$$3x + 4$$
 when $x = 5$

4.
$$5y - 6$$
 when $y = 4$

5.
$$\frac{5y}{4}$$
 when $y = 8$

6.
$$\frac{4k}{3}$$
 + 5 when $k = 6$

To solve the equation

a number that can be added to 6 to equal 10.

x + 6 = 10, think of

Solve each equation using the substitution method.

Example -

$$x + 6 = 10$$

If
$$x = 2$$
, $x + 6 = 2 + 6$

If
$$x = 3$$
, $x + 6 = _{\underline{}} + 6$

If
$$x = 4$$
, $x + 6 = 4 + 6$

x = 4 is the solution of the equation x + 6 = 10.

7. x + 8 = 15

If
$$x = 5$$

If
$$x = 5$$
, $x + 8 = \underline{\hspace{1cm}} + 8$

If
$$x = 6$$
,

If
$$x = \underline{\hspace{1cm}} + 8 = \underline{\hspace{1cm}} + 8$$

x = is the solution of the equation x + 8 = 15.

8. m-7=12

If
$$m = 17$$

If
$$m = 17$$
, $m - 7 = \underline{\hspace{1cm}} - 7$

If
$$m = 18$$
,

If
$$m = \underline{\hspace{1cm}} - 7$$

m =_____ is the solution of the equation m - 7 = 12.

9. a + 3 = 11

10.
$$g - 4 = 5$$

11.
$$b + 7 = 12$$

12.
$$h + 10 = 18$$

13.
$$k - 9 = 7$$

14.
$$p - 15 = 3$$

To solve the equation

4p = 16, think of a number that can be

multiplied by 4 to

equal 16.

Solve each equation using the substitution method.

- Example -

$$4p = 16$$

If
$$p = 2$$
, $4p = 4 \cdot _{\underline{}}$

If
$$p = 3$$
, $4p = 4 \cdot _{\underline{}}$

If
$$p = 4$$
, $4p = 4 \cdot 4$

$$=$$
 16

p = 4 is the solution of the equation 4p = 16.

15. 6p = 30

If
$$p = 3$$

If
$$p = 3$$
, $6p = 6 \cdot ____$

If
$$p = 4$$

If
$$p = 4$$
, $6p = 6 \cdot ____$

If
$$p =$$
_______, $6p = 6 \cdot$ ______

p = is the solution of the equation 6p = 30.

16. $\frac{1}{4}w = 3$

If
$$w = 10$$

If
$$w = 10$$
, $\frac{1}{4}w = \frac{1}{4} \cdot \underline{\hspace{1cm}}$

If
$$w = 11$$
,

If
$$w = 11$$
, $\frac{1}{4}w = \frac{1}{4} \cdot \underline{\hspace{1cm}}$

If
$$w = \underline{\hspace{1cm}}$$

If
$$w =$$
______, $\frac{1}{4}w = \frac{1}{4} \cdot$ _____

w =_____ is the solution of the equation $\frac{1}{4}w = 3$.

Name: _____

Date: _____

18.
$$8z = 56$$

19.
$$\frac{1}{2}b = 9$$

20.
$$\frac{1}{3}k = 10$$

Solve each equation using the concept of balancing.

Example

$$x + 12 = 28$$

$$x + 12 = 28$$

$$x = _{16}$$

 $x = \underline{16}$ is the solution of the equation x + 12 = 28.

$$a + 9 = 24$$

$$a =$$
_____ is the solution of the equation $a + 9 = 24$.

Name: _____

Date: _____

22. c + 14 = 31

c = is the solution of the equation c + 14 = 31.

23. w + 15 = 32

24.
$$g + 16 = 37$$

25. 75 = p + 29

26.
$$83 = s + 46$$

Solve each equation using the concept of balancing.

– Example –

$$w - 9 = 17$$

$$w - 9 = 17$$

$$w-9 + 9 = 17 + 9$$

 $w = \underline{26}$ is the solution of the equation w - 9 = 17.

27. w - 8 = 25

$$w - 8 = 25$$

w =_____ is the solution of the equation w - 8 = 25.

28. k - 13 = 8

$$k - 13 = 8$$

$$k - 13 \bigcirc = 8 \bigcirc$$

k = is the solution of the equation k - 13 = 8.

29. b - 13 = 21

30.
$$37 = d - 18$$

31.
$$m - 15 = 9$$

32.
$$11 = y - 29$$

Solve each equation using the concept of balancing.

Example -

$$3x = 18$$

$$3x = 18$$

$$3x \left(\div \right) \underline{\qquad} = 18 \left(\div \right) \underline{\qquad} 3$$

x = 6 is the solution of the equation 3x = 18.

33.
$$7x = 42$$

$$7x = 42$$

x = _____ is the solution of the equation 7x = 42.

34.
$$5p = 30$$

$$5p = 30$$

$$5p = 30$$

p =_____ is the solution of the equation 5p = 30.

35. 7*m* = 49

36. 9w = 108

37. 6*n* = 48

38. 11*e* = 77

Solve each equation using the concept of balancing.

Example -

$$\frac{x}{8} = 4$$

$$\frac{x}{8} = 4$$

$$\frac{x}{8} \cdot \underline{\qquad 8} = 4 \cdot \underline{\qquad 8}$$

 $x = \underline{32}$ is the solution of the equation $\frac{x}{8} = 4$.

39.
$$\frac{w}{9} = 6$$

$$\frac{w}{9} = 6$$

w =______ is the solution of the equation $\frac{w}{9} = 6$.

40.
$$\frac{y}{4} = 9$$

$$\frac{y}{4} = 9$$

y =______ is the solution of the equation $\frac{y}{4} = 9$.

41.
$$\frac{m}{9} = 3$$

42.
$$\frac{h}{7} = 10$$

43.
$$5 = \frac{b}{8}$$

44.
$$7 = \frac{s}{9}$$

Solve each equation using the concept of balancing. Write your answer in simplest form.

Example

$$x + \frac{1}{6} = \frac{5}{6}$$

$$x + \frac{1}{6} = \frac{5}{6}$$

$$x + \frac{1}{6} - \frac{\frac{1}{6}}{\frac{1}{6}} = \frac{5}{6} - \frac{\frac{1}{6}}{\frac{1}{6}}$$

$$x = \frac{4}{6}$$

$$=\frac{\frac{2}{3}}{}$$

Subtract $\frac{1}{6}$ from both sides of the equation and the two sides will remain equal. Then simplify.

 $x = \frac{\frac{2}{3}}{\frac{1}{6}}$ is the solution of the equation $x + \frac{1}{6} = \frac{5}{6}$.

45.
$$x + \frac{3}{8} = \frac{7}{8}$$

$$x + \frac{3}{8} = \frac{7}{8}$$

$$x + \frac{3}{8} - \underline{\hspace{1cm}} = \frac{7}{8} - \underline{\hspace{1cm}}$$

x =_____ is the solution of the equation $x + \frac{3}{8} = \frac{7}{8}$.

46.
$$e + \frac{2}{10} = \frac{7}{10}$$

e =_____ is the solution of the equation $e + \frac{2}{10} = \frac{7}{10}$.

47.
$$k + \frac{4}{9} = \frac{7}{9}$$

48.
$$\frac{11}{12} = p + \frac{2}{12}$$

Solve each equation using the concept of balancing. Write your answer in simplest form.

Example

$$x - \frac{2}{9} = \frac{1}{9}$$

$$x - \frac{2}{9} = \frac{1}{9}$$

$$x - \frac{2}{9} + \underline{\qquad \qquad } = \frac{1}{9} + \underline{\qquad \qquad } = \frac{2}{9}$$

$$x = \underline{\qquad \qquad } = \frac{3}{9}$$

Add $\frac{2}{9}$ to both sides of the equation and the two sides will remain equal. Then simplify.

 $x = \frac{1}{3}$ is the solution of the equation $x - \frac{2}{9} = \frac{1}{9}$.

49.
$$g - \frac{1}{6} = \frac{1}{6}$$

$$g - \frac{1}{6} = \frac{1}{6}$$
$$g - \frac{1}{6} + \underline{\qquad} = \frac{1}{6} + \underline{\qquad}$$

g =_____ is the solution of the equation $g - \frac{1}{6} = \frac{1}{6}$.

50.
$$d - \frac{7}{15} = \frac{2}{15}$$

d =_____ is the solution of the equation $d - \frac{7}{15} = \frac{2}{15}$.

51.
$$w - \frac{1}{8} = \frac{5}{8}$$

52.
$$\frac{7}{10} = n - \frac{1}{10}$$

Solve each equation using the concept of balancing. Write your answer in simplest form.

– Example –

$$5x = \frac{2}{5}$$

$$5x = \frac{2}{5}$$

$$5x \div \underline{\qquad 5} = \frac{2}{5} \div \underline{\qquad 5}$$

$$x = \frac{2}{5} \cdot \frac{\frac{1}{5}}{\frac{2}{5}}$$

Divide both sides of the equation by 5 and the two sides will remain equal. Then simplify.

 $x = \frac{2}{25}$ is the solution of the equation $5x = \frac{2}{5}$.

53. $7x = \frac{4}{7}$

$$7x = \frac{4}{7}$$

$$7x \div \underline{\hspace{1cm}} = \frac{4}{7} \div \underline{\hspace{1cm}}$$

$$x = \frac{4}{7} \cdot \underline{\hspace{1cm}}$$

x =_____ is the solution of the equation $7x = \frac{4}{7}$.

54. $9m = \frac{5}{6}$

$$9m = \frac{5}{6}$$

$$9m = \frac{5}{6}$$

$$m = \frac{5}{6}$$

$$=$$

m =______ is the solution of the equation $9m = \frac{5}{6}$.

55. $3b = \frac{2}{7}$

56. $4s = \frac{8}{9}$

57.
$$\frac{3}{4} = 9y$$

58.
$$\frac{4}{5} = 6x$$

59.
$$8v = \frac{6}{7}$$

60.
$$\frac{10}{11} = 5w$$

Chapter 8

Lesson 8.1

1. 7

2. 4

3. 19

4. 14

5. 10

6. 13

7. If
$$x = 5$$
, $x + 8 = \underline{5} + \underline{8}$

If
$$x = 6$$
, $x + 8 = \underline{6} + \overline{8}$

$$= \underline{14} \left(\neq \right) \underline{15}$$

x = 7 is the solution of the equation x + 8 = 15.

8. If m = 17, m - 7 = 17 - 7

$$= 10 \neq 12$$
If $m = 18$, $m - 7 = 18 - 7$

$$= 11 \neq 12$$
If $m = 19$, $m - 7 = 19 - 7$

$$= 12 = 12$$

$$= \underline{12} \left(= \underline{)12}$$

m = 19 is the solution of the equation m - 7 = 12.

- **9.** *a* = 7
- **10.** q = 9
- **11.** b = 5
- **12.** h = 8
- **13.** k = 16
- **14.** p = 18

15. If
$$p = 3$$
, $6p = 6 \cdot \frac{3}{2}$

p = 5 is the solution of the equation 6p = 30.

16. If
$$w = 10$$
, $\frac{1}{4}w = \frac{1}{4} \cdot \underline{10}$

$$= \frac{10}{4} \text{ or } 2\frac{1}{2} \neq 3$$

If
$$w = 11$$
, $\frac{1}{4}w = \frac{1}{4} \cdot \underline{11}$

$$=\frac{11}{4} \text{ or } 2\frac{3}{4} \neq \underline{3}$$

If
$$w = \underline{12}, \frac{1}{4}w = \frac{1}{4} \cdot \underline{12}$$

$$=\frac{12}{4} \text{ or } 3 = 3$$

 $w = \underline{12}$ is the solution of the equation $\frac{1}{4}w = 3$.

- **17.** g = 7
- **18.** z = 7
- **19.** b = 18
- **20.** k = 30

21.
$$a + 9 = 24$$

$$a + 9 - 9 = 24 - 9$$

$$a = 15$$

a = 15 is the solution of the equation a + 9 = 24.

22.
$$c + 14 = 31$$

$$c + 14 \bigcirc \underline{14} = 31 \bigcirc \underline{14}$$

$$c = 1$$

c = 17 is the solution of the equation c + 14 = 31.

- **23.** w = 17
- **24.** g = 21
- **25.** p = 46
- **26.** s = 37

27.
$$w - 8 = 25$$

$$w - 8 + 8 = 25 + 8$$

$$w = 33$$

w = 33 is the solution of the equation w - 8 = 25.

28.
$$k - 13 = 8$$

$$k - 13 + \underline{13} = 8 + \underline{13}$$
$$k = 21$$

k = 21 is the solution of the equation k - 13 = 8.

- **29.** b = 34
- **30.** d = 55
- **31.** m = 24
- **32.** y = 40

33.
$$7x = 42$$

$$7x \div 7 = 42 \div 7$$

$$x = 6$$

 $x = \underline{6}$ is the solution of the equation 7x = 42.

34.
$$5p = 30$$

$$5p \div \underline{5} = 30 \div \underline{5}$$

$$p = 6$$

 $p = \underline{6}$ is the solution of the equation 5p = 30.

- **35.** m = 7
- **36.** w = 12
- **37.** n = 8
- **38.** e = 7

39.
$$\frac{w}{9} = 6$$

$$\frac{w}{9} \cdot \underline{9} = 6 \cdot \underline{9}$$

$$w = 54$$

 $w = \underline{54}$ is the solution of the equation $\frac{w}{9} = 6$.

40.
$$\frac{y}{y} =$$

$$\frac{y}{4}$$
 \bigcirc $\underline{4} = 9$ \bigcirc $\underline{4}$

$$v = 36$$

y = 36 is the solution of the equation $\frac{y}{4} = 9$. **41.** m = 27 **42.** h = 70

$$x + \frac{3}{8} = \frac{7}{8}$$

$$x + \frac{3}{8} - \frac{3}{8} = \frac{7}{8} - \frac{3}{8}$$

$$x = \frac{4}{8}$$

$$= \frac{1}{2}$$

 $x = \frac{1}{2}$ is the solution of the equation $x + \frac{3}{8} = \frac{7}{8}$.

$$e + \frac{2}{10} = \frac{7}{10}$$

$$e + \frac{2}{10} \bigcirc \frac{2}{10} = \frac{7}{10} \bigcirc \frac{2}{10}$$

$$e = \frac{5}{10}$$
$$= \frac{1}{2}$$

 $e = \frac{1}{2}$ is the solution of the equation $e + \frac{2}{10} = \frac{7}{10}$.

47. $k = \frac{1}{2}$

48.
$$p = \frac{3}{4}$$

49.

$$g - \frac{1}{6} = \frac{1}{6}$$

$$g - \frac{1}{6} + \frac{1}{6} = \frac{1}{6} + \frac{1}{6}$$

$$g = \frac{2}{6}$$

 $g = \frac{1}{3}$ is the solution of the equation $g - \frac{1}{6} = \frac{1}{6}$.

$$d - \frac{7}{15} = \frac{2}{15}$$

$$d - \frac{7}{15} = \frac{2}{15}$$

$$d - \frac{7}{15} \underbrace{+ \frac{7}{15}}_{15} = \frac{2}{15} \underbrace{+ \frac{7}{15}}_{15}$$
$$d = \underbrace{\frac{9}{15}}_{5}$$
$$= \frac{3}{5}$$

 $d = \frac{3}{5}$ is the solution of the equation $d - \frac{7}{15} = \frac{2}{15}$

52.
$$n = \frac{4}{5}$$

53.

$$7x = \frac{4}{7}$$

$$7x \div \underline{7} = \frac{4}{7} \div \underline{7}$$

$$x = \frac{4}{7} \cdot \frac{1}{7}$$
$$= \frac{4}{49}$$

 $x = \frac{4}{49}$ is the solution of the equation $7x = \frac{4}{7}$.

$$9m = \frac{5}{6}$$

$$9m \oplus \underline{9} = \frac{5}{6} \oplus \underline{9}$$

$$m = \frac{5}{6} \bigodot \frac{1}{9}$$
$$= \frac{5}{64}$$

 $m = \frac{5}{54}$ is the solution of the equation $9m = \frac{5}{6}$.

56.
$$s = \frac{2}{9}$$

57. $y = \frac{1}{12}$

58.
$$x = \frac{2}{15}$$

60.
$$w = \frac{2}{11}$$

Lesson 8.2 1. 6 + *u*

5. a) x - 10

b)
$$y = x - 10$$

c) Independent: x Dependent: y

6. a) g + 6

b)
$$h = g + 6$$

c) Independent: g Dependent: h

7. a) (t + 35) dollars

b)
$$u = t + 35$$

c) Independent: t Dependent: u

8. a) q - 8

b)
$$v = g - 8$$

c) Independent: g Dependent: v

9. a) $4 \cdot d = 4d$

b)
$$g = 4d$$

c) Independent: d Dependent: g

10. a) $m \div 10 = \frac{m}{10}$

b)
$$w = \frac{m}{10}$$

c) Independent: m Dependent: w

11. a) 3n years

b)
$$s = 3n$$

c) Independent: n Dependent: s

12. a) $b \div 5 = \frac{b}{5}$ dollars **b)** $k = \frac{b}{5}$

b)
$$k = \frac{b}{5}$$

c) Independent: b Dependent: k